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In analyzing systems which depend on uncertain parameters, one tech-
nique is to partition the uncertain parameter domain into a failure set
and its complement, and judge the quality of the system by estimating the
probability of failure. If this is done by a sampling technique such as Monte
Carlo and the probability of failure is small, accurate approximation can re-
quire so many sample points that the computational expense is prohibitive.
Previous work of the authors has shown how to bound the failure event
by sets of such simple geometry that their probabilities can be calculated
analytically. In this paper, it is shown how to make use of these failure
bounding sets and conditional sampling within them to substantially re-
duce the computational burden of approximating failure probability. It is
also shown how the use of these sampling techniques improves the confi-
dence intervals for the failure probability estimate for a given number of
sample points and how they reduce the number of sample point analyses
needed to achieve a given level of confidence.
Keywords: uncertainty propagation, failure probability.

I. Introduction

This paper considers a system that depends on parameters subject to uncertainty that
are modeled probabilistically by modeling the vector of uncertain parameters as a vector
of random variables. Acceptability of the system is assessed by determining if the system
satisfies a set of requirements which are prescribed as a set of constraints.
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The values of the uncertain parameters which result in an unsatisfactory system may
be agglomerated into an event which will be called the failure domain. A measure of how
satisfactory the system is can be found in the probability of failure. Computation of the
exact probability of failure by, for example, computing the integral of the probability density
function over the failure domain, is usually a computationally intractable problem. This is
true even if the probability distribution of the uncertain parameter vector is known precisely
in terms of effectively computable probability density functions or cumulative distribution
functions, and even if a given realization of the uncertain parameters may be tested for mem-
bership in the failure domain by an effectively computable procedure (which, in a realistic
engineering example, often takes a substantial amount of computation).

A typical technique used to approximate the failure probability is based on sampling the
uncertain parameter at a large number of points and analyzing the system for each of these
sample values to determine which sample values fall in the failure domain. The higher the
precision needed from such an approximation, or the closer the failure probability is to zero,
the more sample points need to be used; and this technique can also become computationally
intractable.

In prior work,1 the authors have shown how, in this context, to calculate sets whose com-
plements bound the failure domain and which have such simple geometry (hyper-rectangles
or hyper-spheres) that their probabilities may be determined analytically for a very useful
family of possible distributions of the uncertain parameters. These sets have been used to
find upper bounds for the failure probability.

In this paper, two techniques are presented which reduce the number of sample points
which must be subjected to the full computational burden of system analysis while using a
sampling based method to estimate the failure probability. These are called hybrid methods
since they both make use of the failure domain bounding sets and also make use of sampling
techniques. In one, the rejection method,1 an adequate number of sample points is generated
in the uncertain parameter space, but a simple test is applied to each to see if it falls outside
the failure bounding set. If it does, it is unnecessary to go to the computational expense of
subjecting that point to a full system analysis; i.e., that point is rejected for analysis. In
the other, the conditional sampling method, the only sample points generated fall within the
failure bounding set. These points are distributed according to the portion of the distribution
of the uncertain parameters which is supported by the failure bounding set. This reduces the
number of points needed (substantially, if the event bounding the failure domain itself has
small probability) to achieve a given level of confidence in the failure probability estimate
because, in contrast to the rejection based method, no sample points are ever generated
that need to be rejected. The conditional distribution technique can be considered to be
an importance sampling technique2–4 where the distribution used for sampling is determined
using information obtained from a failure bounding event (set) which has been found by
solving an optimization problem, and from which samples can be drawn analytically.

It is then shown how using these sampling techniques can reduce the number of samples
needed (vs. full space sampling) to achieve a given level of confidence or, conversely, how
more confidence can be achieved for an estimate based on a given number of sample points.
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II. Basic Notions

The objective of this paper is the analysis of systems having a parametric mathematical
model. These parameters, denoted by the vector p, are considered to be uncertain. This
uncertainty is modeled by considering the vector of uncertain parameters to be a vector
of random variables whose distribution is specified by a joint probability density function
(PDF) fp(p) whose support set, also called the uncertainty set, is denoted by ∆p. Hereafter,
the terms “uncertainty set” and “support set” will be used interchangeably. By specifying
the uncertainty model, it is implied that ∆p contains the true value(s) of p. In principle, the
uncertainty set can be unbounded and can even be the entire parameter space. In practical
applications, the choice of this model is usually made by a discipline expert. However,
the theory presented herein acknowledges that such a choice may be fairly arbitrary, and
addresses the need for quantifying the level of tolerance of the system to uncertainty in
p. Any member of the uncertainty set is called a realization. The nominal parameter value,
denoted by p̄, is a parameter realization regarded as a good deterministic representation of p.
Requirements on the system are prescribed by means of the collection of constraint functions,
g(p) ≤ 0 (this and all vector inequalities are considered satisfied if they are satisfied in every
component).

A system is considered robust if the constraints are satisfied for all p ∈ ∆p. For systems
which are non-robust, the failure probability to be approximated subsequently is a metric of
the degree of non-robustness.

The Failure Domain F is given bya

F ∆
=

q⋃

j=1

F j,

where the scalar components of the vector g(p) are 〈g1(p), g2(p), . . . , gq(p)〉, and

F j ∆
= {p : gj(p) > 0}.

Here, F j is the failure domain corresponding to the jth requirement, and F is the failure
domain for all requirements. Usually, the equation gj = 0 partitions the parameter space into
two parts, the failure domain F j corresponding to the jth requirement, and its complement
set, the Non-failure Domain corresponding to the jth requirement, (F j)c (the superscript c
denotes the set complement operator).

III. Set Deformations

Failure set bounding is accomplished by expanding or contracting a specially chosen
Reference Set. The Reference Set will be denoted by Ω and will be chosen as a hyper-sphere
or hyper-rectangle centered at the nominal parameter p̄. The hyper-sphere of radius R
centered at p̄, denoted by S(p̄, R), is defined by

S(p̄, R) = {p : ‖p− p̄‖ ≤ R} .

aThroughout this paper, super-indices are used to denote a particular vector or set while sub-indices refer
to vector components; e.g., pj

i is the ith component of the vector pj .
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The hyper-rectangle centered at p̄ whose shape is determined by the vector m > 0 of the
half-lengths of the sides is denoted R(p̄, m) and is defined by

R(p̄, m) = {p : pi ∈ [p̄i −mi, p̄i + mi], 1 ≤ i ≤ s}

where s
∆
= dim(p). Choice of these reference sets is motivated by the analyst’s perception

of relative uncertainty of the parameters. Hyper-spherical sets consider parameters with
similar levels of uncertainty. They could also be used for parameters with dissimilar levels
of uncertainty if some scaling is used. However, whether scaling is used or not, a degree of
dependence is introduced. For instance, the range of variability of one parameter depends
on the values taken on by the others. Rectangular sets permit the consideration of dissimilar
levels of uncertainty without the need for scaling and introduce no such dependence. Such
levels are attained by making mi proportional to the level of uncertainty in pi.

In previous work,1 a measure of robustness has been assigned to the system based on
measuring how much the reference set can be deformed before intersecting the failure domain.
In that study, deformations of Ω are limited to Homothetic Deformations, by which is meant
that Ω is expanded or contracted preserving proportionality and orientation, while p̄ remains
fixed. Thus, if the hyper-sphere S(p̄, R) is deformed by a factor of α, the resulting homothet
is S(p̄, αR), while if the hyper-rectangle R(p̄, m) is deformed by a factor of α, the resulting
homothet is R(p̄, αm). Expansions are accomplished when α > 1, while contractions result
when α < 1.

Throughout this paper, two uncertainty sets will be called Proportional if one of the two
sets can be formed from the other by an homothetic deformation. Call the factor of this
deformation the Similitude Ratio and denote it by α.

In what follows, it will be assumed that the nominal parameter value is feasible; i.e.,
g(p̄) ≤ 0. Intuitively, one imagines that a set proportional to the reference set is being de-
formed with respect to the nominal parameter point until its boundary touches the boundary
of the failure domain; i.e., until at least one member of the deformed set is on the verge of
violating one or more of the requirements in g. Any point where the deforming set touches
the failure domain is a Critical Parameter Value (CPV). A CPV, which will be denoted
hereafter by p̃, might not be unique. The expanded set is called the Maximal Feasible Set
(MFS) and it is denoted by Mp. The Critical Similitude Ratio, denoted by α̃, is the Simili-
tude Ratio of that deformation, and the parametric safety margin, to be defined later, is a
dimensional metric that quantifies the size of the MFS.

Formulations that enable the deformation of hyper-spherical and hyper-rectangular ref-
erence sets are introduced next.

III.A. Deformation of hyper-spheres

The CPV for the jth requirement is given by

p̃j = argmin
p

{
‖p− p̄‖ : gj(p) ≥ 0

}
, (1)

while the overall CPV is given by
p̃ = p̃i, (2)

where
i = argmin

1≤j≤q

{
‖p̃j − p̄‖

}
. (3)
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Hence, the CPV problem is solved for each individual requirement, and, from these, the
overall CPV is selected which is closest to the nominal parameter point. Additional con-
straints can be imposed on Equation (1) to prevent the CPV from assuming values leading
to infeasible systems; e.g., if p1 is a mass, the constraint p1 > 0 must be added.

The CPV is the p value on the boundary of the failure domain closest to the nominal
parameter point. The Spherical Parametric Safety Margin (PSM), denoted by ρS, is ‖p̃−p̄‖,
and the Spherical Maximal Feasible Set (MFS) is M ∆

= S(p̄, ρS). M is the largest sphere
centered at p̄ which does not intersect the failure domain.

III.B. Deformation of hyper-rectangles

Recall that the infinity norm in a finite dimensional space is defined as ‖x‖∞ = supi{|xi|}.
Let us define the m-scaled infinity norm as ‖x‖∞m = supi{|xi|/mi}. A distance between the
vectors x and y can be defined as ‖x − y‖∞m. Using this distance, the “unit ball” centered
at p̄ is just R(p̄, m).

The CPV corresponding to the deformation of R(p̄, m) results from using Equations (1-
3) after replacing the Euclidean norm with the m-scaled infinity norm defined above. Hence,
the CPV is solved for each individual constraint function, and the overall CPV is selected
to be the individual CPV which is closest to the nominal parameter point according to the
m-scaled infinity norm. For instance, using the definition of the m-scaled infinity norm in
Equation (1) leads to

p̃j = argmin
p

{
max
1≤k≤s

|pk − p̄k|
mk

: gj(p) ≥ 0

}
.

The “max” can be eliminated from the objective function, thereby eliminating potential
derivative discontinuities, by introducing the Similitude Ratio α defined earlier:

〈p̃j, α̃j〉 = argmin
p,α

{α : gj(p) ≥ 0, |pi − p̄i| ≤ αmi, 1 ≤ i ≤ s} (4)

As before, additional constraints can be imposed on Equation (4) to prevent the CPV from
assuming values leading to infeasible systems. The interpretation of p̃ given in the previous
section can be naturally extended to the rectangular case. Figure 1 shows a sketch with
relevant metrics.

The Rectangular Parametric Safety Margin (PSM), denoted by ρR, is ρR
∆
= α̃‖m‖, and

the Rectangular Maximal Feasible Set (MFS) is M = R (p̄, α̃m). M is the largest homothet
of R(p̄, m) which does not intersect the failure domain.

IV. Failure Probability: Upper Bounds and Hybrid Methods for
Estimation

In general, the estimation of failure probabilities is difficult since it requires evaluating
a multi-dimensional integral over a complex integration domain. Since the direct compu-
tation of P [F ] is usually impractical, one needs to use approximations such as First Order
Reliability Method (FORM)2 or Monte Carlo sampling.5 Sampling techniques tend to be
computationally intensive.
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Figure 1. Relevant metrics for a rectangular reference set.

Recall that a probabilistic uncertainty model is prescribed by the joint PDF fp(p), whose
support set is ∆p; or, equivalently, by the joint cumulative distribution function (CDF)
Fp(p). Strategies for the calculation of upper bounds to the probability of failure based on
the deformations of sets in p-space and u-space (to be defined) are presented next.

IV.A. Upper bounds to Failure Probability

Let
ψ

∆
= P [Mc] = 1− P [M], (5)

where M is the maximal feasible set resulting from a homothetic deformation of a reference
set Ω. This number ψ is an upper bound to P [F ].

When the components of p are independent random variables and Ω is hyper-rectangular,
ψ can be calculated by a simple formula1 which requires using evaluations at only two points
of each of the CDFs of the individual components of p.

One important special case of parametric uncertainty arises when the parameter vector
has the standard normal distribution. This is not only a useful model in itself, but is
also used in analyzing other parameter uncertainty models when a probability preserving
transformation U can be found so that, when u = U(p), then fu is the standard normal
distribution. Under such a transformation, if F is the failure set in p-space, U(F) is the
failure set in the corresponding u-space, and the constraint function g in p-space transforms

into the constraint function G(u)
∆
= g(U−1(u)). Such a transformation is used in many

standard techniques such as FORM. In this paper, the term u-space refers to an uncertain
parameter space in which the uncertainty is the standard normal distribution. Note that if
a system has both p-space and u-space representations connected by a transformation U ,
reference set choices are made independently in the two spaces and are not connected through
the transformation U , since U will usually fail to preserve the geometric form needed for
the failure probability bounding calculations made in this paper. This also means different
bounds may be achieved in the two representations, and no general rule is known to determine
in advance which is better.
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IV.B. Hybrid Methods for Estimating Failure Probability

The developments that follow are applicable to both p- and u-spaces.
In Monte Carlo sampling, a representative sample {p1, p2, . . . ,pN} of the random vector

p is generated, the constraint function values g(pi), i = 1, . . . N , are calculated, and P [F ]
is estimated as the fraction of these constraint vector values which place pi in the failure
domain. The value of N is dictated by the confidence desired in the resulting approximation
(the higher the confidence, the bigger N must be) and P [F ] (the closer P [F ] is to 0, the
bigger N must be). Since P [F ] is presumably unknown in advance, it might be necessary to
pick a trial value for N , generate N samples, and estimate P [F ] and calculate the confidence
interval at some level of confidence (frequently, 95%) for this estimate, and decide if more
samples must be analyzed to gain an acceptable level of confidence. (As an aside, note that
the same problem arises if P [F ] is close to 1. However, as a practical matter, it is not
anticipated that failure probability estimates will be made in cases where failure is almost
certain.)

Very small probabilities arise in practical engineering examples. For example, the FAA
Federal Aviation Regulations (FARS, 14 CFR) Part 25 – Airworthiness Standards: Trans-
port category airplanes, Section 1309 – Equipment, systems, and installations includes the
specification that

. . .
(b) The airplane systems and associated components, considered separately and
in relation to other systems, must be designed so that –

(1) The occurrence of any failure condition which would prevent the continued
safe flight and landing of the airplane is extremely improbable . . .

In Advisory Circular No. 25.1309-1A, the FAA quantifies their phrase “Extremely Improb-
able” as “having a probability on the order of 10−9 or less.”

Hybrid Methods, to be introduced subsequently, approximate the failure probability by
combining sampling methods with the failure set bounds. Applications of the rejection based
method and a conditional sampling method to problems in u-space have been made previ-
ously.1 This paper extends these ideas to problems in p-space, and presents improved and
extended versions of the conditional sampling techniques. The present p-space conditional
sampling techniques can be applied in u-space. Using the present techniques in u-space
constitutes an improvement over the methods given in the Ref. 1.

One advantage of doing the analysis in p-space is that, as long as the constraint function
g and the reference set Ω have not changed, the p-space MFS, denoted here by Mp, remains
the same even if the uncertainty distribution fp assigned to p changes. However, if the u-
space has been defined as the image of p-space under a probability preserving transformation
U and a u-space MFS, denoted here by Mu, has been calculated using the derived constraint
function G(u) = g(U−1(u)), changing fp changes U and consequently G, so a new MFS
Mu must be calculated.

Sampling based methods depend on the generation of sample sets from specified dis-
tributions. One general technique is reviewed here. Suppose that X = (X1, X2, . . . , Xs)
is a vector of s mutually independent random variables whose CDF is F (x1, x2, . . . , xs) =
F1(x1)F2(x2) · · ·Fs(xs). It is desired to generate a sample set of N vectors from the distribu-
tion F . First, generate a sample {v1, v2, . . . , vN} distributed uniformly over an s-dimensional
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hypercube which is the Cartesian product of s copies of the interval (0, 1). There is an abun-
dance of software to find such samples either using pseudo-random number generators (as
would be done in Monte Carlo analysis) or using deterministic schemes such as Hammers-
ley Sequence Sampling or Halton Sequence Leaped6 for generating so-called low discrepancy
sequences. Then, if xj

i = F−1
i (vj

i ), the set {x1, x2, . . . , xN} is such a sample set. Standard
libraries for statistical analysis, such as the Matlab©r Statistics Toolbox, contain software to
evaluate the PDF, CDF, and inverse CDF of many commonly used distributions.

IV.B.1. Rejection Method

The simplest of the hybrid methods is the rejection method. In the rejection method, a
p-space sample {p1, p2, . . . ,pN} is first generated according to the distribution fp(p).

Once the MFS M has been determined, an arbitrary sample pi can be easily tested for
membership in this MFS. If pi ∈ M, it is unnecessary to go to the computational expense
of evaluating g at pi, since the outcome is now known. For hyper-rectangular reference sets,
where M = R(p̄, α̃m), the membership test for pi ∈ M, is that every component of the
vector |pi− p̄| be bounded by the corresponding component of α̃m; i.e., ‖pi− p̄‖∞m ≤ α̃. The
only situation in which we use hyper-spherical reference sets is in u-space with its standard
normal distribution. Consideration is limited to hyper-spheres centered at the origin. In this
case, M = Su(0, α̃R), and the membership test for ui ∈M, is ‖ui‖ ≤ α̃R.

For ease of discussion, it is assumed that the sample points in {p1, p2, . . . ,pN} have been
renumbered so that {p1, . . . ,pn} ⊂ Mc and {pn+1, . . . ,pN} ⊂ M. Since F ⊂ Mc, and
recalling the definition of ψ in Equation (5), the conditional probability equation P [A | B] =
P [A ∩B]/P [B] implies (with A = F and B = Mc) that

P [F ] = ψP [F | Mc].

P [F | Mc] is estimated by
∑n

i=1 I (pi) /n where I is the indicator function of F which is
given by:

I(p) =
{

1 if p ∈ F
0 otherwise

Notice that determining which value I(p) takes on requires evaluating g(p). This provides
the estimate:

P [F ] ≈ ψ

n

n∑

i=1

I
(
pi

)
(6)

This sum involves only the members of the sample set which are in Mc. Thus, it can be
considered that the points of the original sample which fall in M have been rejected. This
motivates the use of the name Rejection Method. Notice also that, since ψ can be calculated
directly from knowledge of M and fp, and since n/N is an estimate of ψ, the expected value
of n, the number of sample points falling inside Mc, can be controlled by the choice of N .

Equation (6) provides an approximation to P [F ] when ψ is calculated using the overall
CPV p̃, and to P [F j] when ψ is calculated using the individual CPV p̃j. Note that P [F ] ≥
max{P [F j]}. The membership test above allows identifying the n samples out of N to be
evaluated by the indicator function. Since the MFS is used in this fashion, this variant of the
hybrid method is called rejection-based. Other variants7 of the hybrid method are available.

Since this method avoids evaluating g at all samples within the MFS, its efficiency in-
creases with the magnitude of the parametric safety margin. The accuracy of the hybrid
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method using n samples is comparable to the accuracy of the Monte Carlo method using
N = [n/ψ] samples, where [x] is the integer for which [x] ≤ x < [x] + 1. Hence, the larger
the MFS, the larger the numerical gain.

IV.B.2. Conditional Sampling

The rejection method can save a lot of computational effort on system analysis (evaluation
of the constraint functions). However, if the failure probability is very small, it is still
necessary to generate a very large number of samples (the N of the previous section) in
order to have a sufficiently large number (the n of the previous section) of samples falling
in F to provide a good estimate of P [F ]. The same considerations for determining N for
Monte Carlo sampling apply to determining N for the rejection method. This would require
an unmanageable number of samples if P [F ] were on the order of, say, 10−9 as in the FAA
specification mentioned earlier.

The next technique presented is Conditional Sampling. In this technique, only sample
points outside the MFS M are generated. These are generated according to the portion of the
distribution of the uncertain parameters which has M as its support (see Equation (7)). In
this way, the expense of generating N−n points which end up falling within M and of testing
them for membership in M is avoided. The computational cost of generating each sample
point using the proposed conditional sampling techniques for either the hyper-rectangular or
hyper-spherical M can be expected to be larger than the cost of generating a sample point
unconditionally from the distribution of the uncertain parameter. So conditional sampling
becomes preferable to the rejection method when P [M] is sufficiently close to 1.

Versions are given for MFSs which are hyper-rectangles and MFSs which are hyper-
spheres. The version for hyper-rectangles requires only that the components of the random
vector be independent random variables, and is stated for p-space. It could be applied to
u-space since the random variables there also have independent components. The hyper-
spherical version applies only to u-space hyper-spheres centered at the origin.

If components of a random vector p are independent random variables, then samples
of the vector can be generated by sampling each component independently. The problem
to be overcome with the conditional sampling techniques given here is that the conditional
distributions used no longer describe independent random variables.

The two conditional sampling techniques given here are examples of what is called in
the literature importance sampling. See Refs. [2–4] and their bibliographies. In importance
sampling, the uncertain parameters are sampled, not according to the distribution f which
actually describes their uncertainty, but according to a different distribution h chosen (typi-
cally) to give more samples in areas important to the analysis. In order to make the resulting
analysis valid for the distribution f , the contribution of each sample point x generated ac-
cording to the h distribution is weighted by the correction factor f(x)/h(x). For this to be a
valid procedure, care must be exercised in the choice of h; for example, consideration must
be given to the support set of f and to the probabilistic estimate being accomplished by the
sampling procedure. In the present case, the h distributions are the conditional distributions
used for picking the conditional samples, and the ratio f(x)/h(x) is constant over the range
of x values of interest, and that constant is the reciprocal of the probability of some bounding
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set for the failure domain. Specifically, if Mc is a failure bounding set and ψ = P [Mc]:

h(x) =

{
0 x ∈M
f(x)
ψ x ,∈M

(7)

Some authors have referred to this special case of importance sampling as “Partition of
the Region.”

Hyper-rectangles:

Recall that s has been defined to be dim(p). Here it is assumed that the components
〈p1, . . . ,ps〉 of the random vector p of uncertain parameters are independent random vari-
ables. This means that the joint PDF of p and the joint CDF of p are products of the
respective marginal functions:

fp(p) = fp1
(p1) · · · fps

(ps) (8)

Fp(p) = Fp1
(p1) · · ·Fps

(ps) (9)

The MFS is a hyper-rectangle:

M = R(p̄, αm)

For purposes of this section, it is more convenient to represent M as a Cartesian product of
intervals:

M = I1 × · · ·× Is

where
Ij = [aj, bj], j = 1, . . . , s

with aj = p̄j − αmj and bj = p̄j + αmj.
The conditional PDF to be sampled from is

h(p)
∆
= fp(p | Mc),

(we write h instead of hp to reduce notational clutter subsequently when subscripts are added
to represent various marginal distributions) and is represented by the equation:

h(p) =






0 p ∈M
fp(p)

P [Mc]
otherwise

Denote the corresponding CDF by H(·).
A sample point from this conditional distribution is generated one coordinate at a time,

with coordinate s being generated first, then s−1, and so on until a value has been generated
for each coordinate. To do this, it is necessary to refer to the “partial hyper-rectangles”

Mk = I1 × · · ·× Ik

so that Ms = M.
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Recursive formulas give the marginal probabilities of these partial hyper-rectangles and
their complements. This means that probabilities of Mk and Mc

k are given with respect to
the marginal distribution in k-dimensional space of the partial random vector 〈p1, . . . ,pk〉.
The basis step of these recursive formulas is:

P [M1] = Fp1
(b1)− Fp1

(a1)

P [Mc
1] = Fp1

(a1) +
(
1− Fp1

(b1)
)

For k > 1, the recursive step is:

P [Mk] = P [Mk−1]
(
Fpk

(bk)− Fpk
(ak)

)

P [Mc
k] = P [Mc

k−1] + P [Mk−1]
(
Fpk

(ak) + (1− Fpk
(bk))

)

This form of the formulas is chosen rather than calculating P [Mc
k] as 1 − P [Mk] to avoid

the numerical pitfalls of subtracting two nearly equal numbers which could arise if the MFS
had probability nearly equal to 1. Of course, the same problem can arise in calculations of
the form 1−F (b). Any relief from numerical problems of this form must depend on specific
properties of the individual CDFs. For example, if F is the standard normal distribution,
1− F (b) can be calculated as F (−b) to avoid the problem. Using software for the standard
normal CDF from the Matlab©r Statistics Toolbox on a 64 bit computer with ANSI standard
floating point arithmetic for F and b = 8.25, F (−b) is computed to at least 12 digits accuracy
while the computation represented by 1− F (b) is in error by about 40%.

The sample construction process also uses the marginal distributions of h on each of the
spaces formed by the first k components of p. So, if

fk(p1, . . . ,pk) = fp1
(p1) · · · fps

(pk),

this marginal conditional PDF is

hk(p1, . . . ,pk)
∆
= fk(p1, . . . ,pk | Mc

k),

and is represented by the equations:

hk(p1, . . . ,pk) =






0 p ∈Mk

fp(p1, . . . ,pk)

P [Mc
k]

otherwise

Denote the corresponding CDF by Hk(p1, . . . ,pk).
The generation of a given coordinate of a sample vector depends on where the previously

generated coordinates lie. Suppose that the coordinates 〈pk+1, . . . ,ps〉 have been generated.
If any one of the coordinates pj ,∈ Ij, k+1 ≤ j ≤ s, no matter how the remaining coordinates
are picked, the sample point will fall in Mc, as desired. This means that sample value pk

may be picked by sampling from the distribution Fpk
. If, however, all of the coordinates

pj ∈ Ij, k + 1 ≤ j ≤ s (and this case applies vacuously in case k = s), the sample must be
chosen according to a distribution which apportions the proper weight to whether the sample
point pk falls within or outside Ik. This requires sampling from Hk,k which is the marginal
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distribution of Hk for its last coordinate. hk,k(p∗k) is calculated by integrating hk(p1, . . . ,pk)
over the half-space

{〈p1, . . . ,pk〉 | −∞ < p1 < ∞, . . . ,−∞ < pk−1 < ∞,−∞ < pk ≤ p∗k}.

This produces the formula:

Hk,k(p
∗
k) =






Fpk
(p∗k)

P [Mc
k]

p∗k < ak

Fpk
(ak)P [Mk−1] + Fpk

(p∗k)P [Mc
k−1]

P [Mc
k]

ak ≤ p∗k < bk

Fpk
(p∗k)− P [Mk]

P [Mc
k]

bk ≤ p∗k

By using F−1
pk

, H−1
k,k may be evaluated as needed, and the required sample generated as noted

previously.
As previously remarked, this technique can be applied in u-space for arbitrary hyper-

rectangles.

Origin centered hyper-spheres in u-space:

The problem considered here is to sample from the s-dimensional standard normal dis-
tribution conditional on the sample points falling outside an origin centered hyper-sphere in
u-space having radius R. One sampling technique for this case has been presented in earlier
work.1 The present work is an improvement over the previous in that sample points are not
confined to fall on a limited number of lines through the origin, so are distributed in a more
representative fashion. The key to this is making use of the CDF Λs of the random variable
‖u‖. This is known as the χ-distribution with s degrees of freedom. Λs is given1 (see also
Ref. [8], p. 168, for the corresponding χ2-distribution CDF formula) by:

Λs(r) =






erf
(

r√
2

)
−

√
2
π

(
rs−2

(s−2)!! + rs−4

(s−4)!! + · · ·+ r
1!!

)
e−r2/2 if r ≥ 0, s odd

1−
(

rs−2

(s−2)!! + rs−4

(s−4)!! + · · ·+ r2

2!! + 1
)

e−r2/2 if r ≥ 0, s even

0 otherwise

Here, n!! is the double factorial, defined as:

n!! =

{
n · (n− 2) · · · 5 · 3 · 1 n > 0 and odd
n · (n− 2) · · · 6 · 4 · 2 n > 0 and even
1 n = −1, 0

The conditional distribution of the magnitude of the s-dimensional standard normal

random vector u subject to the condition that r
∆
= ‖u‖ > R is given by:

Λs,R(r) =






0 r ≤ R
Λs(r)− Λs(R)

1− Λs(R)
r > R
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To generate n samples of the standard normal random vector of dimension s, first gen-
erate n unit vectors uniformly distributed over the surface of the unit sphere. One way to
accomplish that is to first generate n vectors {v1, . . . ,vn} in s-dimensional Euclidean space
which are sampled from the standard normal distribution. The rows of the matrix generated
by the Matlab©r command v = randn(n,s); can be used here. Then normalize them by
setting wi = vi/‖vi‖. Then sample n numbers {r1, . . . , rn} from the distribution Λs,R. The
desired conditional sample is then calculated as ui = riwi, 1 ≤ i ≤ n.

To calculate {r1, . . . , rn}, one can start with numbers {x1, . . . , xn} sampled from the
uniform distribution on the real interval (0, 1), and solve each of the (non-linear) equations
Λs,R(ri) = xi for ri. This can be accomplished using available software (for example, in the
Matlab©r Statistics Toolbox) for the inverse of the χ2 CDF.

IV.B.3. Confidence Intervals

A few remarks on the numerical features of the hybrid method are now in order. If P̂ is a
sampling-based estimate of P [F ], the corresponding 100(1− α)% confidence interval [L, U ],
satisfies

P [L < P̂ < U ] = 1− α.

Confidence intervals relate P̂ with P [F ] by bounding the true, unknown value of the ap-
proximation with defined certainty. This technique is illustrated in the literature.9 Here,
confidence interval studies for traditional Monte Carlo are compared with those for the hybrid
method. A model problem is chosen with a two dimensional vector of uncertain parameters
having a standard normal distribution; i.e., a two dimensional u-space. There is a single
constraint function which is affine; i.e., linear plus a constant. With this simple model, the
probability of failure can be determined analytically, and can be adjusted to any desired
level by adjusting the coefficients in the constraint function. Since P̂ is a binomial random
variable, we can solve for L and U after applying the binomial test.

For the first study, the constraint function coefficients are chosen so that the MFS M
is an origin centered circle (2-dimensional hypersphere) of radius is 3.25. This dictates that
P [M] = 0.9949, P [Mc] = 5.086×10−3, and P [F ] = 5.72×10−4. Figure 2 illustrates how the
width of the confidence interval varies with the required number of g evaluations, namely n,
for this problem, using both Monte Carlo sampling and the hybrid method.

The computational improvements of the hybrid method are apparent. The improvement
in efficiency, denoted by δn, is given by the horizontal distance between the two curves for a
fixed U − L value. δn at a given U − L value is the additional number of samples a Monte
Carlo simulation requires to get the same confidence interval width. The improvement in
accuracy, denoted by δa, is given by the vertical distance between the curves for a fixed
number of g evaluations. δa at a given n value is how much wider the confidence interval of
the Monte Carlo estimate is as compared to the confidence interval of the hybrid method.
For the particular case shown, improvements of about two orders of magnitude in δn and δa
are attained.

Metrics for evaluating the relative improvements in efficiency and accuracy, denoted by
ηn and ηa hereafter, are introduced next. For a fixed U − L value, the number of Monte
Carlo samples at which the constraint function must be evaluated is ηn times as large as the
corresponding number for the hybrid method. On the other hand, for a given value of n,
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Figure 2. Number of g evaluations vs. width of the 95% confidence interval for P [F ] = 5.72× 10−4.

the width of the confidence interval of the Monte Carlo estimate is ηa times as large as the
width of the confidence interval for the Hybrid Method.

Figure 3 illustrates the dependence of ηn and ηa on P [F ]. In the calculation of ηn, we
use α = 0.05 and U − L = P [F ]/10 for P [F ] < 0.5, and U − L = (1− P [F ])/10 otherwise.
Hence, we set the width of 95% confidence interval to be 10% of the failure probability. In
the calculation of ηa we assume n = 1000. It can be seen that the numerical gain of the
hybrid method for both ηn and ηa increases with the distance of P [F ] from 0.5. While ηa

reaches 6 when P [F ] = 0.005, ηn grows even faster reaching 16.8 at P [F ] = 0.01. In general,
the numerical improvements are proportional to the size of the MFS. Such improvements
are substantial when P [F ] is relatively large or relatively small, the latter being the targeted
range in practical, safety-driven applications. When M = ∅, which is the worst case, the
hybrid method is equivalent to Monte Carlo. In the last two figures we have purposely left
out the number of g evaluations required to find the CPV since this number depends on
the initial condition of the numerical search. For this representative problem the number
of g evaluations to find the CPV ranged from 9 to 31 and averaged 15. As compared to
the number of function evaluations due to sampling, this contribution to n is practically
negligible. Even though the same trends have been observed in large dimensional problems,
a formal analysis of the method is beyond the scope of this paper.

V. Example

In order to be able to evaluate the results of a conditional sampling numerical experi-
ment, a simple model is chosen which allows analytic determination of P [F ]. The uncertain
parameter vector is a 4-dimensional standard normal random vector. A single constraint
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Figure 3. P [F ] vs. ηn (dashed line) and ηa (solid line).

function is used, G(u) = 〈a, u〉 − b where 〈a, u〉 denotes the vector inner product of a and

u, a is chosen to be (10, 1, 1, 1), and b
∆
= β‖a‖ where β = 5.9978. These choices make

P [F ] = 10−9. This probability is so small that it is not practical to estimate using full space
sampling methods such as the hybrid rejection method or the Monte Carlo method. For
example, it would take 1,442,695,000 random samples to have a 50% chance of finding even
one failure point. To estimate this P [F ] with any significance would take tens or hundreds
of billions of random samples. This is not currently practical.

However, P [F ] can be estimated using the spherical MFS version of the conditional
sampling technique with reasonable precision with much fewer sample points. In this case,
M = Su(0, β), so P [Mc] = 293.0 × 10−9. Thus, it would be expected that about one in
every 293 conditional samples is a failure point. The failure probability can be determined
with a manageable number of sample points.

The conditional sampling estimate of P [F ] was made using a conditional sample of
100,000 points. A total of 100 independent repetitions of the sampling estimate were made.
A plot, shown in Fig. 4, of the relative errors between the estimates and the true failure
probability shows that the Conditional Sampling technique has captured the failure proba-
bility to a reasonable level. For example, 92 of the 100 trials show a relative error within the
±10% range and the worst relative error is about 14%.

Confidence interval analyses at the 95% confidence level for each of these 100 trials shows
that the true failure probability falls within the confidence interval in 93 of the trials.

On a desktop system running Matlab©r 7.4.0.336 (R2007a) on an Intel©r Pentium©r 4 CPU
3.40GHz computer, it took about 6 minutes to generate and analyze the 10 million sample
points. One must note that the analysis in this simple example is computationally negligible.
It is also of interest to note that, if all 10 million samples are analyzed as a single sample set,
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Figure 4. Relative error in Conditional Sampling estimates of P [F ].

the resulting estimate of failure probability is 0.9926 × 10−9 for a relative error of -0.74%.
The 95% confidence interval for the 10 million point sample is [0.982× 10−9, 1.003× 10−9].
Note that, to get equivalent results to this 10 million point conditional sampling analysis
using the Monte Carlo method or even the hybrid rejection method would require about
34.13 trillion sample points. Based on generating and analyzing 10 million points every 6
minutes, this would take about 39 years.

VI. Summary

Techniques from the literature have been reviewed for using optimization methods to find
upper bounds of failure probabilities by bounding the failure set (constraint violation set) by
a geometrically simple set whose probability can be calculated analytically. We have shown
how to use that failure bounding set to reduce the computational burden for estimating
failure probability by sampling the uncertain parameters. Some of these techniques may be
used in p-space while previous methods were limited to u-space. Improvements have been
made to previous u-space methods. The rejection method generates a full uncertainty set
sample, but rejects any points which fall outside the failure domain bounding set before
subjecting the remaining points to the analysis necessary to determine of they are constraint
violation points. Conditional sampling techniques are given in which only sample points
within the failure domain bounding set are generated, saving the expense of generating
points outside the failure domain bounding set. Probability estimates based on these samples
constitute an application of importance sampling. It is shown how the use of either technique
based on failure domain bounding improves the ratio of confidence in the failure probability
approximation per sample point subject to full system analysis. Finally, an example shows
that Conditional Sampling can be enabling technology in case of need to estimate extremely
small probabilities.
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